Implement an ASPNET
Back Control

Give Web pages a server-side control that redirects the user’s browser to the

referring page.

Technology Toolbox

o

2 VB.NET

o C#

2 SQL Server 2000
o ASP.NET

a XML

2 VB6

Go Online!

Use these Locator+ codes at
www.visualstudiomagazine.com
to go directly to these related
resources.

Download

VS0307QA Download the code for
this article, which includes the
BackLink ASP.NET user control.
Discuss

VS0307QA_D Discuss this article in
the ASP.NET forum.

Read More

VS0307QA_T Read this article
online.

VS0305QA_T Q&A, “Publish Events
Defensively,” by Juval Lowy

VS0304AN_T ASP.NET, “Maintain
State With Dynamic Controls,” by
Garry McGlennon

VSEP020722AN_T “Communicate
Between User Controls” by
Jonathan Goodyear

52

Q: Implement an ASP.NET
Back Control

I want to add a link to my ASP.NET pages that

goes back to the page that referred them. How

do I use a server-side control to do this? I need to

have control over the referred page, and using a

browser history isn’t an option.

A:

You have two ways to implement a “back” link
on a Web page. The first is to use a client-side

by Juval Lowy

script to access the browser history of visited
pages and insert a redirection to the previous

page:

<a href=
"javascript:history.back()">Back

However, this technique has several disadvan-
tages. The application has no control over where
the user is redirected. You often want to keep the
users inside the application, and you don’t want

Some Sub Form

Figure 1 Use the BackLink User Control. The BackLink control presents the same design-time
properties as the LinkButton control. The BackLink control redirects the user's browser to the previ-

ous page at run time.

VISUAL STUDIO MAGAZINE - JuLY 2003 -

www.visualstudiomagazine.com

C# ¢ Implement the BackLink User Control

[ToolboxData("<{0}:BackLink
runat=server></{0}:BackLink>")]
[ToolboxBitmap(typeof(BackLink),"BackLink.bmp")]
public class BackLink : LinkButton
{
public BackLink()
{
Text "Back";
ToolTip =
"Click to go to the previous page";

}

protected override void OnClick(EventArgs e)
{
Uri backURL = (Uri)Page.Sessionl
"Referring URL"];
Page.Session["Referring URL"]
if(backURL != null)
{
Page.Response.Redirect(
backURL.AbsoluteUri);

null;

}
}
protected override void OnLoad(EventArgs e)
{

Uri backURL = Page.Request.Ur]Referrer;

if(backURL == null) //No referrer
information
{
Enabled = false:
return;
}
if(backURL.AbsolutePath !=
Page.Request.Ur1.AbsolutePath)
{
Page.Session["Referring URL"]
backURL;
Enabled = true;
return;
}
else
{
object obj Page.Session[
"Referring URL"];
if(obj != null)
{
Enabled = true;
}

}
base.OnLoad(e);

}

Listing 1 The BackLink control derives from LinkButton, which does the actual rendering. BackLink caches the referrer page at load time in

a session variable, and it redirects the user to it by overriding OnClick().

them to wander off to other pages. This solution works only if the
browser supports client-side script. Its biggest disadvantage is that
it’s inconsistent with the ASP.NET programming model. One of
ASP.NET’s greatest benefits is that—unlike classic ASP—it doesn’t
require you to rely on client-side script. You simply use server-side
controls that you write in managed code, and ASP.NET does the
rest. When you use client-side script, you disconnect the back link
from the rest of your application, which executes on the server and
uses server-side controls. This leaves you no easy way to enable or
disable the back link or control the redirection, based on server-side
event processing.

The second solution is to use an ASP.NET custom user control.
The source files accompanying this article contain the BackLink
ASP.NET user control in the WebControlsEx class-library assem-
bly (download the source code from the VSM Web site; see the Go
Online box for details). To use it, right-click on the Web Forms
toolbox, and select Add/Remove Items... from the popup context
menu. Click on the Browse... button on the .NET Frameworks
Components tab. Select the WebControlsEx assembly and click on
Open. This adds the BackLink user control to the toolbox. You can
simply drag and drop it onto your forms to add a link-button-like
control to the form, with the text set to “Back.” The control presents
the same design-time properties as the standard link button: You
can change the text, fontsize, color, boldness, annotation, and other
properties, such as link style (see Figure 1). The back-link control
redirects the browser to the previous page, if one is available, when
the user clicks on the button at run time.

Implementing the BackLink user control is more challenging
than meets the eye. You must start with a DLL class library in order
to build a user Web control. You can provide a user control either
by deriving from a class called WebControl and doing the rendering

VISUAL STUDIO MAGAZINE + JULY 2003 + www.visualstudi g com

yourself, or by deriving from an existing control and specializing its
behavior. Deriving from a LinkButton is the better option by far for
a back-link control, because the LinkButton control provides most
of the difficult-to-implement functionality.

Derive a class called BackLink from LinkButton and set the Text
property in its constructor to Back, to provide some meaningful
default value:
public class BackLink : LinkButton
{

public BackLink()

{

Textr= mBaok"

The link button derivation does the actual work of rendering the
text to appropriate HTML. It also exposes all the LinkButton’s
properties—such as default property, font setting properties, and
events—from the BackLink to the visual designer.

TheLinkButton hasa protected virtual method called OnClick(),
which .NET calls after a post back to the server, letting the link
button publish the click event to the event subscribers. The
LinkButton must override OnClick() and redirect the user to the
referring page.

The important question is how you can get the page that referred
the current page at the server side, in the scope of the BackLink control.
Fortunately, ASP.NET enables this: The HttpRequest object exposes
a public property of type Ut called UrlReferrer, which is the URL of
the page that referred the current page. The LinkButton user control
can obtain a reference to the page that hosts it through the Control

53

class’s Page property. Control is the base class of WebControl, which
is the base class of LinkButton. The control can also use the Page
property to access its HetpResponse object (the Response property) to
redirect the user to the referring page.
However, the back link doesn’t work if you use this code to
implement the BackLink control:
public class BackLink : LinkButton
{
public BackLink()
{
Text
}
protected override void
OnClick(EventArgs e)

= "Back";

Uri backURL =
Page.Request.Ur1Referrer;

Page.Response.Redirect(
backURL.AbsoluteUri);

}
The reason lies in the way ASP.NET keeps track of referring pages.

For example, consider the page Home.aspx, which redirects the user
to the page SubForm.aspx. If the SubForm.aspx page hasa BackLink

k=
We personnalize
your needs!

A

NEW
Document Converter Suite £
PDF-RTF-HTML-Excel-JPEG

Amyuni’s new Document Converter gives you
more document conversion power in a more
streamlined product. Our flagship PDFConverter
technology has been applied to RTF, HTML,
Excel® and JPEG formats and integrated them in
one global Amyuni printer driver.

"4

www.amyuni.com

info: sales@amyuni.com

Americas Europe
Toll Free: 1-866-926-9864 Sales: (+33) 1 30 61 07 97
Support: (514) 868-9227 Support: (+33) 1 30 61 07 98

All trademarks are property of their respective owners.© 2002 AMYUNI Technologies Al rights reserved.

54

control on itand the user clicks on the link, this triggers a post back
to the server. The value of the UrlReferrer property on the server is
“SubForm.aspx”—not “Home.aspx”—because SubForm.aspx re-
fers to itself in the case of a post back. The solution is to cache the
referring page in a session variable during the control’sload time and
redirect to the referring page in OnClick().

Now you have more issues to deal with: ASP.NET isn’t always
capable of providing pages with referring information, in which case
ASP.NET sets the value of UrlReferrer to null. You also want to
provide a “smart” back link that always redirects to the logical
previous page. In other words, if a page that contains a BackLink is
reloading itself (after handling some control’s click event), the back
link should be smart enough to detect this and redirect to the “real”
previous page, not to itself. Note that this functionality is impossible
ifyou rely on client-side script, because the back history variable will
yield the same page in the case of a post back.

BackLink overrides its base class’s OnLoad() method (see Listing 1).
OnLoad() is called when the page containing the BackLink control
isloaded. OnLoad() checks first whether the referring page informa-
tion is available. If UrlReferrer is null, then OnLoad() disables the
back link. If referring information is available, you need to verify
that the referring page isn’t the current page. You can do this easily
by comparing the referring URL with the requested URL:

if(backURL.AbsolutePath !=
Page.Request.Url.AbsolutePath)

BackLink stores the referring URL in a session variable if the two

URLs are different:

Page.Session["Referring URL"] =
backURL;

Then it enables the control. If the addresses are the same, BackLink
verifies that a referring URL is cached already, before enabling the
control. In OnClick(), you must access the session variable, and if
the session variable exists, redirect the user to the referring page.
You can also provide the visual designer with information about
the user control. The ToolboxData attribute instructs VS.NET
what to insert in the ASPX file when you drop the control on a Web
form. The ToolboxBitmap contains a reference to the control icon,
in the form of an embedded resource. As Figure 1 shows, this icon
appears in the toolbox once you add the control to it. vsm

Juval Léwy is a software architect and the principal of IDesign, a
consulting and training company focused on .NET design and .NET
migration. Juval is Microsoft's regional director for the Silicon Valley,
working with Microsoft on helping the industry adopt .NET. His latest
book is Programming .NET Components (O'Reilly & Associates). Juval
speaks frequently at software-development conferences. Contact
him at www.idesign.net.

Additional Resources

Programming .NET Components by Juval Lowy [B'Rellly &
Associates, 2003, ISBN: 0596003471]

JULY 2003 -« www.visualstudiomagazine.com

VISUAL STUDIO MAGAZINE «

